M.Sc.-II

Computer Science

Savitribai Phule Pune University

(Formerly University of Pune)

Two year M.Sc. Degree Program in Computer Science (Faculty of Science & Technology)

M.Sc.- II (Computer Science)

Choice Based Credit System Syllabus To be implemented from Academic Year 2020-2021

CSDT234A

Big Data Analytics

Total Credits – 2

Pre-requisites:

- Basic knowledge of Linux working and its commands.
- One must be able to install and uninstall its packages.
- Programming Languages Programming Languages like Python, Scala, Java is required because it helps to understand Hadoop programming.

Course Objectives:

- 1. To understand the Big Data challenges & opportunities, its applications
- 2. Understanding of concepts of map and reduce and functional programming
- 3. Gain conceptual understanding of Hadoop Distributed File System.
- 4. To solve the case studies related to real life situations
- 5. To bridge the gap between academics and industry needs.

Course Outcomes:

- Recognize the characteristics, applications of big data that make it useful to real-world problems.
- Process available data using big data tools hadoop file system and predict outcomes to solve given problem.
- Study & Design various case studies using big data tools/commands and analyse it.

Chapter No.		Topics	# Lectures		
1.	Intro	duction to Big data			
	1.1	Big Data :Definition & taxonomy	5		
	1.2	Sources of Big Data			
	1.3	3V's of Big Data (need for Hadoop)			
	1.4	Varying data structures			
	1.5	Characteristics of Big Data			
	1.6	Applications of Big Data			
	1.7	Challenges in Big Data			
	1.8	Big Data Implications for Industries Big Data Analytics for Telecom/Banking/Retail/HealthCare/IT/Operations			

CBCS	: 2020-2	M.ScII	Computer Science
2.	Emerg	ging Database Landscape	3
	2.1	Scale-Out Architecture, RDBMS Vs Non-Relational	
		Database	
	2.2	Database Workload & its Characteristics	
	2.3	Implication of Big Data Scale on Data Processing	
3.	Applic	cation Architecture & Data Modeling For Big Data A	nd 5
	Analy		
	3.1	Big Data Warehouse & Analytics	
	3.2	Big data Warehouse System requirements & Hybrid	
		Architectures	
	3.3	Enterprise Data Platform Ecosystem	
	3.4	Big Data and Master Data Management	
	3.5	Understanding data integration Pattern	
	3.6	Big Data Workload Design Approaches	
	3.7	Map-Reduce patterns ,Algorithms and Use Cases	
4.	The H	adoop Ecosystem	8
	4.1	Introduction to Hadoop	
	4.2	Hadoop Architecture	
	4.3	History of Hadoop-Facebook,Dynamo,Yahoo,Google	
	4.4	Hadoop Components :HDFS, Mapreduce	
	4.5	Introduction to Pig,Hive ,HBase ,Mahout	
	4.6	Installation of single node cluster-installation of java	
		Hadoop configuration	
5.	Extrac	cting Value From Big Data	4
	5.1	Real Time Analytics	
	5.2	In-Memory Data Grid for real Time Analysis	
-	5.3	Map reduce & Real Time Processing ,Use Cases	_
6.	Big Da	Ita Analytics Methodology	5
	6.1	Big Data Analytics Methodology-Analyze & evaluate	
	6.0	business cases	110
	6.2	Develop Business Hypothesis – Analyze outcomes, Bui	ld &
		Prepare Data Sets ,Select & Build Analytical Model ,De	sign
		ior Big Data scale .Build production ready system ,sett	ing
		up the Big Data Analytics system ,Gathering data ,mea	sure
		& monitor	

M.Sc.-II

References:

- 1. Madhu Jagdeesh,Soumendra Mohanty,Harsha Srivatsa,"Big Data Imperatives: Enterprise Big Data Warehouse,BI Implementations and Analytics",1st Edition, Apress(2013)
- 2. Frank J.Ohlhorst,"Big Data Analytics:Turning Big Data into Big Money",Wiley Publishers(2012)
- 3. Cristian Molaro,Surekha Parekh,Terry Purcell,"DB2 11:The Database for Big Data & Analytics",MC Press,(2013)
- 4. Tom White,"Hadoop-The Definitive Guide,Storage and analysis at internet scale",SPD, O'Really.
- 5. DT Editorial Services,"Big Data, Black Book-Covers Hadoop2, MapReduce,Hive,YARN, Pig, R and Data Visualization" Dreamtech Press,(2015).
- 6. Big Data Case Study by Bernard Marr Willey Publications.

CSDP234A

Big Data Analytics Practical

Total Credits – 2

NOTE:

It is expected to form teams and ask students to solve these case studies, discuss and work on solutions. (Refer Book No 6 for solving case studies. Indetail explanation for case studies below is given in the said book)

- 1. Assignment 1: Case study on Facebook
- 2. Assignment 2: Case Study on IoT Sensors
- 3. Assignment 3: Case Study on Telecom Industry
- 4. Assignment 4: Case Study on Banking
- 5. Assignment 5: Case study on Amazon
- 6. Assignment 6: Case Study on General Electric -By TCS
- 7. Assignment 7 : Case Study on Uber
- 8. Assignment 8: Case Study on Netflix
- 9. Assignment 9: CDC(Corona Virus and other Pandemics)

Practical's

Note: Slips should be designed on the basis of following topics at college level. The practical's should be taken on the basis of above case studies.

- 1. Navigating in Hadoop environment [Operational commands in Hadoop environment like moving, copying files. creating directories etc.
- 2. Understand HDFS
- 3. Using unix tools
- 4. Development in Hadoop environment, using various Hadoop tools/utilities
- 5. Develop mapReduce programs [Assignments] Develop mapReduce functions either in Java or Python